Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract The tidal disruption event (TDE) AT2018fyk showed a rapid dimming event 500 days after discovery, followed by a rebrightening roughly 700 days later. It has been hypothesized that this behavior results from a repeating partial TDE (rpTDE), such that prompt dimmings/shutoffs are coincident with the return of the star to pericenter and rebrightenings generated by the renewed supply of tidally stripped debris. This model predicted that the emission should shut off again around August of 2023. We report AT2018fyk’s continued X-ray and UV monitoring, which shows an X-ray (UV) drop-in flux by a factor of 10 (5) over a span of two months, starting 2023 August 14. This sudden change can be interpreted as the second emission shutoff, which (1) strengthens the rpTDE scenario for AT2018fyk, (2) allows us to constrain the orbital period to a more precise value of 1306 ± 47 days, and (3) establishes that X-ray and UV/optical emission track the fallback rate onto this supermassive black hole—an often-made assumption that otherwise lacks observational verification—and therefore, the UV/optical lightcurve is powered predominantly by processes tied to X-rays. The second cutoff implies that another rebrightening should happen between 2025 May and August, and if the star survived the second encounter, a third shutoff is predicted to occur between 2027 January and July. Finally, low-level accretion from the less-bound debris tail (which is completely unbound/does not contribute to accretion in a nonrepeating TDE) can result in a faint X-ray plateau that could be detectable until the next rebrightening.more » « less
- 
            ABSTRACT We introduce the Hawai‘i Supernova Flows project and present summary statistics of the first 1217 astronomical transients observed, 668 of which are spectroscopically classified Type Ia Supernovae (SNe Ia). Our project is designed to obtain systematics-limited distances to SNe Ia while consuming minimal dedicated observational resources. To date, we have performed almost 5000 near-infrared (NIR) observations of astronomical transients and have obtained spectra for over 200 host galaxies lacking published spectroscopic redshifts. In this survey paper, we describe the methodology used to select targets, collect/reduce data, calculate distances, and perform quality cuts. We compare our methods to those used in similar studies, finding general agreement or mild improvement. Our summary statistics include various parametrizations of dispersion in the Hubble diagrams produced using fits to several commonly used SN Ia models. We find the lowest dispersions using the SNooPy package’s EBV_model2, with a root mean square deviation of 0.165 mag and a normalized median absolute deviation of 0.123 mag. The full utility of the Hawai‘i Supernova Flows data set far exceeds the analyses presented in this paper. Our photometry will provide a valuable test bed for models of SN Ia incorporating NIR data. Differential cosmological studies comparing optical samples and combined optical and NIR samples will have increased leverage for constraining chromatic effects like dust extinction. We invite the community to explore our data by making the light curves, fits, and host galaxy redshifts publicly accessible.more » « less
- 
            ABSTRACT We used Transiting Exoplanet Survey Satellite (TESS) data to identify 29 candidate active galactic nuclei (AGNs) through their optical variability. The high-cadence, high-precision TESS light curves present an opportunity for the identification of AGNs, including those not selected through other methods. Of the candidates, we found that 18 have either previously been identified as AGNs in the literature or could have been selected based on emission-line diagnostics, mid-IR colours, or X-ray luminosity. AGNs in low-mass galaxies offer a unique window into supermassive black hole and galaxy co-evolution and 8 of the 29 candidates have estimated black hole masses ≲ 106 M⊙. The low-mass galaxies NGC 4395 and NGC 4449 are two of our five ‘high-confidence’ candidates. Since our initial sample largely draws from just nine TESS sectors, we expect to identify at least ∼45 more candidates in the TESS primary and extended mission data sets, of which ∼60 per cent will be new AGNs and ∼20 per cent will be in low-mass galaxies.more » « less
- 
            Abstract We present optical and near-infrared (NIR) observations of SN 2022crv, a stripped-envelope supernova in NGC 3054, discovered within 12 hr of explosion by the Distance Less Than 40 Mpc Survey. We suggest that SN 2022crv is a transitional object on the continuum between Type Ib supernovae (SNe Ib) and Type IIb supernovae (SNe IIb). A high-velocity hydrogen feature (∼ −20,000 to −16,000 km s−1) was conspicuous in SN 2022crv at early phases, and then quickly disappeared. We find that a hydrogen envelope of ∼10−3M⊙can reproduce the observed behavior of the hydrogen feature. The lack of early envelope cooling emission implies that SN 2022crv had a compact progenitor with an extremely low amount of hydrogen. A nebular spectral analysis shows that SN 2022crv is consistent with the explosion of a He star with a final mass of ∼4.5–5.6M⊙that evolved from a ∼16 to 22M⊙zero-age main-sequence star in a binary system with ∼1.0–1.7M⊙of oxygen finally synthesized in the core. In order to retain such a small amount of hydrogen, the initial orbital separation of the binary system is likely larger than ∼1000R⊙. The NIR spectra of SN 2022crv show a unique absorption feature on the blue side of the Heiline at ∼1.005μm. This is the first time such a feature has been observed in SNe Ib/IIb, and it could be due to Sr II. Further detailed modeling of SN 2022crv can shed light on the progenitor and the origin of the mysterious absorption feature in the NIR.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
